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Abstract

This paper reexamines a finite property of the standardized likelihood ratio
test statistic designed for a regime switching model by Hansen (1992). The main
findings are as follows. First, we find that the power of the test is not excellent but
moderate when we increase number of sample sets generated by a random
generator and use a finer grid in the simulation. Secondly, the size of the test is
larger than the nominal size for a finer grid point. It suggests the over-rejection of
the null hypothesis, and, specifically, the rejection frequency is twice as much as
the nominal size of 5%. Finally, the over-rejection of the null hypothesis
disappears and the power of the test reduces when the Bartlett kernel is introduced
into the covariance estimator of the test statistic.
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1 Introduction

The concept of ‘regime shifts’ is frequently used to describe changes in the state of
economy. On the empirical front, it is materialized by nonlinear econometric
models, such as thresholds models (Tong, 1983) and Markov-switching models
(Hamilton, 2016). These models attempt to describe discrete changes or
nonlinearities observed in economic and financial data.

A difficulty comes into play when we conduct statistical testing for these
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models. It arises from the fact that some parameters are unidentified under the null
hypothesis. This is the problem of unidentified nuisance parameters, which was
analyzed by Davies (1977, 1987). The existence of unidentified nuisance parameters
makes it impossible to consistently estimate model parameters under the null
hypothesis and to apply the standard asymptotic distributional theory to test
statistics because the likelihood function has multiple local optima and some of the
elements of the score vector (the first-order derivatives) are identically zeros under
the null hypothesis.

Following Davies (1977), Hansen (1996) extended the empirical process
theory to a wide class of estimation problems and test statistics, and Hansen (1992)
used it to derive a bound for the asymptotic distribution of the standardized
likelihood ratio statistic for Markov switching models. Garcia (1998) examined the
asymptotic distribution of the likelihood ratio test statistic, assuming the score is
not identically zero under the null hypothesis. But, the power of such a test is
unknown. Cho and White (2007) proposed a quasi-likelihood ratio (QLR) test and
derives its asymptotic null distribution. Qu and Zhuo (2021) used a higher-order
approximation to refine the asymptotic null distribution of the QLR statistic.

Although Hansen (1992) showed some evidence that the proposed likelihood
ratio test had a good power, the computation requirements did not allow for good
enough simulation exercises to examine the finite sample distribution. In the
literature, this statistic is rarely used. Thus, this paper reexamines the power of the
standardized likelihood ratio test in a finite sample.

The main findings are as follows. First, we find that the power of the test is
not excellent but moderate when we increase number of sample sets generated by a
random generator and use a finer grid in the simulation. Secondly, the size of the
test is larger than the nominal size for a finer grid. It suggests the over-rejection of

the null hypothesis, and, specifically, the rejection frequency is twice as much as
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the nominal size of 5%. Finally, the over-rejection of the null hypothesis
disappears and the power of the test reduces when the Bartlett kernel is introduced
into the covariance estimator of the test statistic.

The rest of the paper is organized as follows. In section 2, we briefly discuss
the testing hypotheses to be studied and review the likelihood ratio test statistic
proposed by Hansen (1992). Section 3 explains specification for the simulation and

examines its results. The final section is allocated to discussion.
2 Testing Hypothesis and Test Statistic

2.1 Testing Hypothesis
Suppose we have two different states of economy. Let ¥: an economic time-series
variable at time ¢ (¢=1, 2, -+, n). Then, we have a simple regime-switching

model as follows:
ye=p+paSite, )]
e~N(0, 0%, )

where (£, /tq, and 0 are all unknown constant parameters, and S: denotes the
economic state at time £, taking either 1 or 0. The transition between states is
assumed to be governed by a first-order Markov process that is independent of &;.

Then, the transition probabilities are:
P[S:=1|Si-1=1]=p, 3)
P[S:=0]S:-1=0]=gq. ©

When x4 is zero, this model reduces to one-state model. Therefore, it is
interesting to conduct the following hypothesis testing to see if the two-state model

is appropriate.
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Hoy: 1qa=0, Hi: pa¥*0, )

where Hy denotes the null hypothesis and A the alternative one. One might use
the conventional ¢-statistic to test, but it does not have the standard null
distribution. Neither do other conventional statistics, such as the likelihood ratio or
the chisquare statistics. This is because p and g are unidentified under the null
hypothesis. That is, we cannot find unique estimates for these parameters to
maximize the likelihood function. Further, the scores with respect to /4, p and g
are identically zeros under the null hypothesis. Then, the standard distributional
theory is inapplicable. To circumvent these problems, Hansen (1992) proposed a
standardized likelihood ratio test statistic and resorted to Monte Carlo simulations

to compute its p-values.

2.2 The Standardized Likelihood Ratio Test Statistic

We provide a schematic explanation for the standardize likelihood ratio test
statistic proposed by Hansen (1992). Let /;(+) a log-transformed probability density
of the model consisting of eq.(1) to eq.(4). Then, the log-likelihood function can be

written in the form:

Lala, O)=3 (. 0), ©)

where 7 is the sample size, @=(xa, p, q) and §=(u, o). Note that 8 is
identified under Ho in (5). For a maximum likelihood estimator, & can be written

as
1
6(a)=arggnax hm;ELn(oz, 9). (7
Therefore, the concentrated log-likelihood function is given by

LS(a)=L.(a, 8(a)). (8)
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To test Ho in (5), consider the following likelihood ratio function:
LRu(@a) = Li(aa) — Li(a), ©

where an is @ under Ho and @, is @ under H,. The test statistic proposed by

Hansen (1992) is given by the supremum of eq.(9):
LR,=supLR,(aa4). (10)

To study a bound of the asymptotic distribution of this statistic, consider the

following decomposition for any a:
LR.(a)=E[LR:(a)]+ Q.(a), an
where E[LR(a)] is the mean and @,(a) is the deviation from the mean. Note:
Qn(a) Zéqt(a), (12)
where

aa)=1(a, 0(a))—l(an, 0(an))
—Elia, 0(a)—l(ay, 0(an)]. (13)

If an empirical process central limit theorem holds, the (@) weakly converges

to a mean zero Gaussian process, Q(a@):
Qi) = Q(a), (14)
7n
as n—00. For different values of @, the covariance function is given by
K(Oll, Cl/z): Z E[Qt(Oll)Qt—k(CVz)], (15)
k=—o0

and the associated variance function is
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V(e)=K(a, a). (16)

Let 8(a) a consistent estimator of 8(a) in eq.(7): it is assumed that 0(a) is
consistent for 9(0{) at rate +/ 72, uniformly in @. Further, we assume that we have a

stochastic order relation for the following Euclidean metric:
sup| Li(a, 0(@))—Li(a, 6(a)) = 0.(0). (17)

Let ¢:(a) the estimator of g:(@) in eq.(13) associated with 9(61/), and it is used to

compute Qn(a@) via eq.(12). Then, eq.(17) implies
sup | Qn(@) = Qn(e) = 0a(1). (18)
The sample analogue of eq.(15) can be written as
Kn(oh, a2)=2ét(a1)&t(ozz)
t=1
M n N N . N
+2 WrMm 2 (CIt—k(Oll)Qz(CVz)+q:(@1)CIt—k(0lz))7 (19)
k=1 t=k+1

where wry is the Bartlett kernel with a bandwidth of M:

k

wkle—m. (20)

When we set a1=a: in eq.(19) and divide its both sides by 7 to obtain the
estimator of variance: V.(a)/n.

Although the mean function in eq.(11) is unknown, we know from eq.(9) that,
under the Ho,

E[LR:(a)]<0. 1)
This implies
1 1
ﬁLRn(oz) Sﬁ@n(a’). (22)
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As assumed before, the right hand side weakly converges to @(a). Therefore,
taking sup of the both sides in eq.(22), we can obtain a bound for the asymptotic
distribution of the statistic in eq.(10). Hansen (1992) argued that the bound has
excessively strong tendency not to reject the null hypothesis: it is too conservative
in practice. To reduce the over-conservative tendency, it is proposed to standardize
the statistic so that the variance is same for all values of a.

For the sample analogue of eq.(22) with the estimator, 9(0{), we have
LRA(a) < @), @3)
n n

The right hand side weakly converges to @ (@) under the conditions of eq.(14) and
eq. (18). The standardized version is obtained by dividing both sides by

4/ f/n(a)/n

LR, (a) - Qu(@)

= <= . (24)
JVu@ " V()
Hansen (1992) assumes:
Qle) _ . Q) 25)

JVu(@) V(@)

Define the standardized likelihood ratio function as

LR (a) =%. 26)
n\

Then, the standardized likelihood ratio statistic is
LR;=supLR; (a). @7

Similarly, we define

@:(a)=%, 28)

and
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sy Q)

Together with eq.(24) and eq.(25), we have
f}fssup Qi (@) = supQ*(a). (30)

Finally, we have the following bound for the asymptotic distribution of the

statistic in eq.(27):
P{fﬁz x} sP{sgp Qx(a) Zx}
zP{sgpQ*(a)Zx}. (31)

The distribution of sup«Q* (@) is generally non-standard, but it is completely

characterized by its covariance function:

K (a1, az)

K*(ay, az)zm. (32)

The consistent estimators of the components on the right hand side are given by
eq.(19). Therefore, it is possible to obtain the approximate distribution of

sSup.@* (@) from the empirical distribution of the random draws, SUD« Q;f ().
3 Monte Carlo Simulation

To conduct the Monte Carlo simulation, we first generate samples under the null
hypothesis. Since the model follows independent and identically distributed (i.i.d.)
normal distribution, we generate samples of i.i.d. normal observations, using the
random generator of the SFMT Mersenne-Twister 19937 (GAUSS software). To
evaluate a finite sample property, the sample size is set to 131, same as in Hansen
(1992). We randomly generate 1131 sample points, and burn out the first and the

last 500 samples. Then, we compute the maximum likelihood (ML) estimates of the
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model under the null hypothesis to obtain the estimate of £5(an).

To compute the estimate of LS(aa), we estimate 8(a) of the model under
the alternative hypothesis for each combination of o= (ua, p, q) using some
grids of values. The estimate of LR, (@) is computed for each combination, and
divided by its standard deviation (eq.(26)). Then, the maximum value is selected for
fl& (eq.(27)). The set of the grid points is same as that of Hansen (1992): 20 grid
points for /g, that is, the range of [0.1, 2] in steps of 0.1, and two sets of grid

points for p and g:

GP6 (6 grid points) : 0.15 to 0.90 in steps of 0.15;
GP8 (8 grid points) : 0.12 to 0.89 in steps of 0.11.

To study size and power of the standardized likelihood ratio (@) statistic,
we need to obtain draws from the empirical distribution of supe®@*(a).

Following Hansen (1992, 1996), we use the expression below:

22/1=02:L=1@t(a)ut+k

LR} (a)= - (33)
S V(@)
where u:(t=1, 2, -, n+M) is a random sample of N (0, 1) variables. The

process of eq.(33) would approximately give rise to the process of Q¥ (@). We use
1000 Monte Carlo samples to calculate asymptotic p-values associated with the
fR\ff statistic. We set M at the values from 0 to 4 throughout simulations in this
section.

To begin with, we examine size of the test, that is, the frequency of rejections
under the null hypothesis in eq.(5). We generate 50 sets of samples of length 131,
consisting of i.i.d normal observations. For each sample set, we compute the L/RE
statistic and its associated p-value. If the p-value is smaller than 0.20, 0.10, or

0.05, the null hypothesis is rejected at the 20, 10, or 5 per cent level, respectively.
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We count the frequencies of rejections out of 50 trials. Selected results are
presented. Table 1 shows a result closest to that of Hansen (1992, 1996) in our
experiments. Table 2, however, shows that the simulation results vary a lot. Then,
we increase the number of sample sets to 100 in Table 3, 200 in Table 4, and 500 in
Table 5. We confirm that the simulation results give less variation as we have more
sample sets to compute the rejection frequencies. This experiment suggests that at
least 500 sample sets will be necessary to draw a conclusion. The results in these
tables indicate the actual size of the test is close to their nominal values of 10% and
5% levels and slightly smaller for 20% level.

To examine the power of the test, we need specify a model under the
alternative hypothesis. Hansen (1992) used the estimates of Hamilton (1989) model,

which is described as:

yr=u+ uaSitus, (34)
¢(L)u=e, (35)
&~N(0, %), (36)
$(L)= 1—2 $iL7, L*y=yi-r (37

where K is set to 4, and 1, (tq, 0 and @; are all unknown constant parameters. The
difference from the model in the previous section is in the error term that follows
an autoregressive (AR) process as in €q.(35). S, p, and q are defined same as in
the previous section. We replicate the maximum-likelihood (ML) estimates in
Table 6.

According to Hansen (1992), the AR parameters were set to zero for the
alternative model in the simulation. But, the zero AR parameters do not maximize

the likelihood function with other estimates in Table 6. This does not satisfy the
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theoretical requirement in eq.(7). In experiments, we computed power of the test
with the AR parameters set to zero, keeping other estimates in Table 6. Then, the
power was 100% for the tests of the nominal sizes from 20% to 5%, which is a
quite different result from that of Hansen (1992). Thus, to keep the theoretical
consistency, we use the estimates of /44, p and @ in Table 6 for the simulation and
recalculate their associated ML estimates of # and 0, setting $;(7=1, 2, 3, 4)
to zero.

Table 7 and 8 show the results from 50 sets of samples. We obtain a similar
result for the nominal size of 20% to that of Hansen (1992), but very different
results for other nominal sizes in Table 7. In addition, the results vary quite a lot as
seen in Table 8. Then, we increase the number of trials to 500 in Table 9. We find
that the power is more than 80% at the nominal size of 20%, around 70% to 80%
for 10% nominal size, and from 55% to 70% for 5% nominal size. Therefore, we
do not come to a conclusion that the test has excellent power as in Hansen (1992).
The power is moderate at the nominal sizes of 10% and 5%, which are the
significance levels frequently used in the literature. This implies that the test will
have a moderate discriminatory power in practice. We note that the power tends to
be stronger as the bandwidth (M) is greater.

In Table 10, we use a finer grid for p and g, that is, 8 grid points (GP8). The
powers of the tests are lower than those in Table 9. The sizes show that the tests
tend to over-reject the null hypothesis relative to the nominal sizes. The actual
sizes show that the null hypothesis would be rejected twice as high as at the
nominal size of 5%. That is, the tests tend to over-reject the null.

Finally, we evaluate the effect of the estimator of the covariance function in
eq. (16) on the simulation results. Instead of eq.(33), we use the following

expression to approximate the empirical distribution of @* (@):
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21::0211«/ wkMC}z(a’) Ut+k
/(@)

LR} (a),= ; (38)
where e is the Bartlett kernel, given by eq.(20). This ensures the positive semi-
definite consistent estimate of covariance matrix in a finite sample (Newey and
West, 1987). Table 11 shows that introduction of the Bartlett kernel makes the
actual sizes of the tests lower than the nominal sizes, and the over-rejection of the
null hypothesis disappears with 8 grid-point simulation. It reduces the power of the
test, however. When the bandwidth (M) is 1, the actual size (3.6%) is close to the
nominal size of 5%, but the power is low, around 31%. The formulation of the

covariance estimator has substantial influence on the size and the power of the test.
4 Discussion

This paper reexamines the standardized likelihood ratio test statistic designed
for a regime switching model by Hansen (1992). The main findings are as follows.
First, we find that the power of the test is not excellent but moderate when we
increase number of sample sets generated by a random generator and use a finer
grid point in the simulation. Secondly, the size of the test is larger than the nominal
size for a finer grid. This suggests the over-rejection of the null hypothesis.
Specifically, the rejection frequency is twice as much as the nominal size of the
5%. Finally, the over-rejection of the null hypothesis disappears and the power of
the test reduces when the Bartlett kernel is introduced into the covariance estimator
of the test statistic.

A couple of caveats are in order. First, we do not examine the size and the
power of the test when a model follows an autoregressive process from eq.(34) to
eq.(37). Hansen (1992, 1996) examined autoregressive processes, different from

those discussed in the previous section, and found that the power of the test
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reduced. This suggests that model specifications would matter. Secondly, a set of
finer grid points might give rise to more accurate results. In general, the finer the
grid, the more accurate the empirical distribution of the test statistic. In the paper,
we only used 6 and 8 grid points for p and g, and 20 points for /4. Finally, choice
of the covariance estimator of the test statistic and its bandwidth also affects its

finite property. These are subjects for future research.
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Table 1 Rejection Frequency under the Null: 50 trials

Size(%) Hansen* Replication 1
Bandwidth Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5
0 12 4 0 12 6 6
1 14 8 0 14 8 6
2 16 8 2 14 8 6
3 14 8 2 14 10 6
4 14 6 2 14 10 6

Note: *Hansen (1992, Erratum: 1996). 6 grid points.

Table 2 Rejection Frequency under the Null: 50 trials, variation

Size (%) Replication 2 Replication 3 Replication 4
Bandwidth Nominal Size (%) Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5 20 10 5
0 6 2 0 20 10 2 24 14 6
1 10 2 0 20 10 4 24 12 6
2 10 4 2 22 8 4 24 14 8
3 12 4 2 22 8 4 22 16 8
4 12 6 2 24 10 4 22 16 10

Note: 6 grid points for p and gq.

Table 3 Rejection Frequency under the Null: 100 trials, variation

Size (%) Replication 1 Replication 2 Replication 3
Bandwidth Nominal Size (%) Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5 20 10 5
0 10 8 5 13 10 5 19 10 7
1 15 9 5 14 7 4 22 14 7
2 14 7 5 15 10 4 21 14 8
3 16 7 6 16 10 5 21 15 8
4 16 7 6 15 10 6 21 15 10

Note: 6 grid points for p and g.
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Table 4 Rejection Frequency under the Null: 200 trials, variation

Size (%) Replication 1 Replication 2 Replication 3

Bandwidth Nominal Size (%) Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5 20 10 5
0 135 5.0 3.0 17.0 8.5 35 20.5 13.0 7.5
1 16.0 5.0 3.0 19.0 10.5 3.5 21.0 14.0 8.0
2 16.5 5.5 35 19.5 12.0 4.5 21.5 14.0 9.5
3 17.0 5.5 35 21.0 12.5 45 22.0 13.5 10.0
4 16.5 6.0 4.0 21.5 12.5 5.0 23.0 15.0 10.5

Note: 6 grid points for p and gq.

Table 5 Rejection Frequency under the Null: 500 trials, variation

Size (%) Replication 1 Replication 2 Replication 3
Bandwidth Nominal Size (%) Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5 20 10 5
0 14.0 7.4 24 15.6 9.6 5.2 17.4 9.8 42
1 16.8 8.4 3.4 17.6 11.0 7.0 19.0 11.2 5.0
2 17.2 9.2 3.4 19.0 11.0 6.8 19.6 10.8 5.4
3 18.4 9.4 3.8 19.8 11.2 7.0 20.2 10.8 5.4
4 18.2 8.8 42 20.0 12.2 7.4 214 10.8 54

Note: 6 grid points for p and q.

Table 6 Estimates of Markov Switching Model: K =4

Parameter Estimate Standard Error*
1z -0.35889 0.44941
Ha 1.52240 0.44647
& 0.01349 0.15913
@2 -0.05751 0.20484
[oB -0.24701 0.14413
[ -0.21290 0.13249
o 0.76900 0.09154
) 0.90407 0.90407
q 0.75463 0.10040
Log-Likelihood value: -183.669 #of obs.: 131

Note: The dependent variable is the rate of change of US real

GNP, 1952:2 to 1984: 4. See Hamilton (1989).
* Heteroskedastic consistent estimates.
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Table 7 Rejection Frequency under the Alternative: 50 trials

Power (%) Hansen* Replication 1

Bandwidth Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5
0 86 80 74 86 70 58
1 86 80 74 84 74 66
2 86 76 74 90 78 70
3 86 76 74 94 30 70
4 86 76 74 94 80 70

Note: *Hansen (1992, Erratum: 1996). 6 grid points.

Table 8 Rejection Frequency under the Alternative: 50 trials, variation

Power (%) Replication 2 Replication 3 Replication 4

Bandwidth Nominal Size (%) Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5 20 10 5
0 72 58 40 82 74 54 90 76 60
1 78 58 52 88 76 56 92 78 64
2 84 66 52 88 78 66 90 82 72
3 84 66 54 88 78 66 92 86 70
4 88 66 56 88 80 64 96 84 74

Note: 6 grid points for p and gq.

Table 9 Rejection Frequency under the Alternative: 500 trials, variation

Power (%) Replication 1 Replication 2 Replication 3

Bandwidth Nominal Size (%) Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5 20 10 5
0 82.8 70.2 55.4 84.6 73.6 60.4 85.6 72.4 59.4
1 85.8 75.0 63.0 87.0 77.2 65.0 88.0 77.4 65.6
2 87.2 77.0 64.8 88.4 79.4 67.8 88.8 80.2 67.4
3 87.6 78.2 66.6 89.6 80.2 69.4 90.0 81.6 69.0
4 88.4 78.8 68.0 90.2 81.2 71.4 90.2 82.0 63.8

Note: 6 grid points for p and g.
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Table 10 Rejection Frequency : 500 trials with GP8

Null (Size) Alternative (Power)
Bandwidth Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5

0 22.8 15.4 9.8 80.2 64.4 50.6

1 24.6 16.4 11.4 83.4 70.2 57.8

2 26.0 15.6 11.2 85.0 71.8 60.2

3 25.8 16.6 12.0 85.4 75.6 61.6

4 26.6 17.4 11.8 86.2 76.2 61.6

Note: 8 grid points for p and q.

Table 11 Rejection Frequency : 500 trials with GP8, Bartlett kernel

Null (Size) Alternative (Power)
Bandwidth Nominal Size (%) Nominal Size (%)
M 20 10 5 20 10 5

0 242 14.8 9.2 83.2 66.4 52.0

1 10.6 6.2 3.6 65.0 44.4 31.4

2 5.6 2.6 1.6 49.8 30.2 16.6

3 2.8 1.2 0.6 38.0 17.6 8.6

4 2.0 1.0 0.2 28.0 11.0 5.0

Note: 8 grid points for p and q. Bartlett kernel for covariance weights.





